Core Transport Reduction in Tokamak Plasmas with Modified Magnetic Shear

M.G. Bell

Princeton Plasma Physics Laboratory Princeton, N.J., U.S.A.

with contributions from

R.E. Bell, P.C. Efthimion, D.R. Ernst, E.D. Fredrickson, F.M. Levinton, J. Manickam, E. Mazzucato, G.L. Schmidt, E.J. Synakowski, M.C. Zarnstorff

Topics

- Transport effects in TFTR reversed-shear plasmas
- Turbulence suppression mechanisms
- Relationship to other enhanced confinement modes
- Stability issues
- Possibilities for exploitation

Plasmas with Modified Magnetic Shear and q(0) > 1 Exhibit Spontaneous Improvements in Confinement

- Theory: stability should improve in regions with reversed magnetic shear, S = r/q· q/ r < 0
- Experiments: improvements in energy confinement
 - ERS, NCS, Reversed-shear, Optimised-shear modes
 - factors 2 4 relative to L-mode scaling
- Formation of prominent internal transport barriers (ITB)
 - obvious in ion temperature and density profiles for NBI heating
 - sometimes exhibit features in electron temperature profile
- Associated with clear transition phenomena in some tokamaks
 - power threshold
 - reminiscent of H-mode transition

Dramatically Different Pressure Evolution of Reversed-Shear Plasmas with Similar Early States

- Rates of neutral beam heating and particle fueling similar
- q profiles similar before transition
- Bifurcation of state: plasmas do not occur with intermediate profiles

Ion Thermal and Electron Particle Transport Sharply Reduced in Plasma Interior after ERS Transition

- Flux balance effective , D: q n T and D n
- Neoclassical calculation includes off-diagonal contributions
- Orbit squeezing effects from Shaing et al. [Phys. Plasmas 1, 3365 (1994)]

Density Profile Evolution Following Puffs of T and He Show Presence of Particle Transport Barrier in ERS

- Times of profiles are from start of 16ms puffs during steady-state ERS phase
- T density inferred from chordal profile of 14MeV DT neutron emission
- He density measured by charge-exchange recombination spectrometry

Particle Diffusivities for Trace T and He Approach Neoclassical Levels at ERS Transport Barrier

- Analysis of density profile evolution assuming D and v_r functions of space only
- In ERS case, T and He data are best fitted with $|v_r| < 3$ m/s for r/a < 0.5
- Tritium diffusivity is ~20 times larger than electron diffusivity from particle balance
- Neoclassical values calculated by NCLASS code

Higher NB Power Required for ERS Transition in D-T

- Threshold increases with plasma current and also depends on wall conditions
- Contrary to recent experience in JET where ITBs formed in DT with similar power to D-only

High Resolution Measurement Shows Structure in Electron Temperature Profile during ERS Phase

- Motion of plasma during steady-state ERS phase sweeps plasma past detectors
 - gradient measured by single detector
- Sharp transition from flat region to large gradient at resolution of individual detector

Jog Profiles Reveal Radial Structure in Electron Thermal Transport of ERS Plasmas

- Structure in ERS is beyond current resolution of transport analysis code (TRANSP)
- $_{e}(ERS) >> _{e}(RS)$ and $_{e}(ERS) >> D_{e}(ERS)$ in core
- e(ERS) ~ 10 D_e(ERS) in region of high T_e gradient

Plasma Turbulence Reduced or Suppressed in Vicinity of Internal Transport Barriers

- Clear association between changes in measured fluctuation levels and transport in the interior of tokamak plasmas
 - already established for reduction of edge turbulence in H-mode
- In TFTR RS, fluctuations have repetitive bursting character
- Bursts disappear rapidly at transition into ERS and plasma becomes quiescent within shear-reversal surface
 - bursts reappear gradually at "back-transition" from ERS
- Behavior consistent with turbulence suppression by sheared plasma flow

Turbulent Fluctuations Suppressed When ExB Shearing Rate Exceeds Maximum Linear Growth Rate of Instabilities

Gyrokinetic Simulations

 Turbulent eddies disrupted by strongly sheared plasma flow

Experiment

 Bursts of fluctuations are suppressed when E×B shearing rate exceeds growth rate of most unstable mode

Core Fluctuation Levels Correlate with Local Transport

- Fluctuations measured by microwave reflectometer
- n_e/n_e, D_e shown in high-gradient region of pressure profile, r/a 0.3
- For all co-injection case, fluctuations decrease again when E_r passes through zero and becomes positive

Large Transient Excursion in Poloidal Velocity Measured Prior to ERS Transition

- Occurs in most but not all plasmas which make transition to ERS
- Excursion precedes signs of ERS in pressure profile by ~50ms

Narrow Poloidal Velocity Shear Layer Develops Inside q_{min} Surface Prior to ERS Transition

- Chordal measurements inverted to produce local poloidal velocity
- Shear layer narrower than sightline separation creates artifact inside
- Located between maximum pressure gradient and shear reversal surface

Radial Force Balance Confirmed by Measurement during E_r Transient

- All terms measured experimentally
- Motional Stark Effect (MSE) diagnostic modified to measure simultaneously emission from full and half energy injected neutrals separation of E_r, B
- Changes in p, v terms small compared to change in v term during transient

Suppression of Turbulence by Sheared Flow Important in Other Confinement Regimes

- Majority of TFTR operation in "Supershot" regime with NBI
 - transitionless: develops smoothly from L-mode
 - shear is positive throughout and q(0) < 1
 - sawteeth suppressed
 - minimal degradation of confinement with power up to -limit
- Measured changes in poloidal flow shear as supershots degraded to L-mode
- Model with turbulence suppressed by velocity shear reproduces many features and trends of supershot confinement

Change in Poloidal Velocity Shear Also Accompanies Transition from Supershot to L-mode Confinement

- Supershot produced by NBI with edge influx controlled by limiter conditioning
- Helium recycling increases edge influx supershot reverts to L-mode
- Poloidal velocity shear decreases by factor 4 as confinement degrades

Model with Turbulence Suppressed by Velocity Shear Reproduces Ion Temperature Profiles in Supershots

- Based on supppression of ITG turbulent ion thermal diffusivity when $\omega_{\rm E imes B} \simeq \gamma_{
 m lin}^{
 m (IFS-PPL)}$ with self-consistent calculation of neoclassical plasma flow.
- ullet Leads to apparent $\chi_{
 m i} \propto 1/{
 m T_i}$ scaling at fixed radius.
- Enhanced confinement zone expands with heating power.
- Supershot behavior resembles ERS, NCS, JT-60 ITB, etc.

Challenge to Achieve Good MHD Stability in Presence of Internal Transport Barriers

- Most regimes with strong internal transport barriers do not achieve high Troyon-normalized- , $_{N} = _{T} \cdot a \cdot B_{T}/I_{p}$
- Maximum _N < 2 in reversed (or weak) shear plasmas with *internal* transport barriers only
 - TFTR, DIII-D, JT-60U, JET
 - barriers create extreme local pressure gradients
 - resulting bootstrap current causes q profile to evolve
- 4 achieved transiently in DIII-D by combining ITB with H-mode edge barrier to reduce local pressure gradient
 - transport barriers "in series"

- Large pressure gradient near mir persists in ERS plasmas even in "postlude" phase
 - drives large bootstrap current
- q_{min}, _{min} both decrease with time
 - -limit is reduced as q_{min}
- N = 2.0, *N = 4.1 achieved with different startup sequence in TFTR
- **Challenge**: control barrier location and shape of q-profile near min

Summary and Issues

- Modifying the magnetic shear has revealed a wealth of transport phenomena in tokamaks
 - improved confinement and performance
 - correlation of suppression of fluctuations and anomalous transport established in plasma interior
 - suppression of turbulence by sheared flow may underlie many regimes of improved confinement
- Maintaining stability in presence of transport barriers and resulting bootstrap current is a real challenge
 - particularly difficult in self-heated (ignited) plasmas
- Development of tools to control location and "impedance" of transport barriers will be vital
 - flow control by RF waves a possibility

